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Figure 1. Examples of the characteristics of different plant surfaces covered with a cuticle
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Fig. 2. a) Confocal images of nanomicelles. Confocal images showing translocation of
fluorescently labelled nanoparticle by leaf.

Analogous foliar uptake and leaf-to-root translocation of micelle
nanoparticles in two dicot plants of diverse families
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Nanotoxicolo gy Nanotoxicology, 2016; 10(3): 257-278 @ Taylor & Francis

Barriers, pathways and processes for uptake,
translocation and accumulation of nanomaterials
in plants - Critical review

Fabienne Schwab, Guangshu Zhai, Meaghan Kern, Amalia Turner, Jerald L.
Schnoor & Mark R. Wiesner

(B) Electron micrograph of onion cell wall cellulose fibers. http://jcs.biologists.
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Figure 3. The electron tomography data collection and segmentation process used on Arabidopsis primary cell walls. September 2014 | Volume 9
| Issue 9 | e106928
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Electron Tomography of Cryo-Immobilized Plant Tissue:
A Novel Approach to Studying 3D Macromolecular
Architecture of Mature Plant Cell Walls In SituFigure 3. The electron tomography data collection and segmentation process used on Arabidopsis primary cell walls randomly
chosen from chemically fixed samples. A. 2D projection image of cell wall. B. Slice of reconstructed tomogram. Bars = 250 nm. C. Sub-area of
tomogram. D. Electron dense cell wall components selected by thresholding (selected areas outlined in red). E. Segmentation map of thresholded cell
wall components (white). F. Mesh surface rendering of threshold segmentation map. Bars = 100nm. G-I. Small representative 3D volumes of the
segmented cell wall showing orientation of filamentous cellulose microfibrils (arrow) and hemicellulose cross-connections (*). G- Top view showing
microfibrils running approximately along the axis of cell elongation (Z-axis). H- Side view showing a single layer of microfibrils. I - Side view showing
neighboring layers of microfibrils. Bars =
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Fig. 5. (A) u-XRF scans showing Zn distribution in cross-sections of sunflower leaves
underlying ZnS0a droplets



PLOS | one

ized Plant Tissue

Yap Jr.%, Jyotirmoy Das’,

Electron Tomography of Cryo-Immob

.

Ting Tsai?,

Wen

2, Edgar G.

1

Purbasha Sarkar'*", Elena Bosneaga



Notas do Presenter
Notas de apresentação
Electron Tomography of Cryo-Immobilized Plant Tissue:
A Novel Approach to Studying 3D Macromolecular
Architecture of Mature Plant Cell Walls In SituFigure 3. The electron tomography data collection and segmentation process used on Arabidopsis primary cell walls randomly
chosen from chemically fixed samples. A. 2D projection image of cell wall. B. Slice of reconstructed tomogram. Bars = 250 nm. C. Sub-area of
tomogram. D. Electron dense cell wall components selected by thresholding (selected areas outlined in red). E. Segmentation map of thresholded cell
wall components (white). F. Mesh surface rendering of threshold segmentation map. Bars = 100nm. G-I. Small representative 3D volumes of the
segmented cell wall showing orientation of filamentous cellulose microfibrils (arrow) and hemicellulose cross-connections (*). G- Top view showing
microfibrils running approximately along the axis of cell elongation (Z-axis). H- Side view showing a single layer of microfibrils. I - Side view showing
neighboring layers of microfibrils. Bars =
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Cation-exchange capacity of plant cell walls at neutral pH

Michael S. Allen, Michael I. McBurney, Peter J. Van Soest

H  OH COO H OH
H 0 a H H O— =
OH H _‘ OH - H CH
 a— UH H 0 >
COO" H o OH COO
O

I
F{/C\'Oﬁ pectic acid { e¢- 1,4 - galacturonic acid |

LAMELA MEDIA


http://upload.wikimedia.org/wikipedia/commons/thumb/b/b5/Carboxylic-acid.svg/748px-Carboxylic-acid.svg.png

‘coor—

| T
OH / | !
f H \4:' H

‘\\ OH H / “OH

H \ | By
C—c

| |
5 .

ct-0-galacturonic acid

,_—..

v 4
1— D'} - o H‘*}— 1::5H
COOT, ++ COOH  COON .,

coos “™ coon E‘UD

82868

Calcium pectate

- .~
- A .




Membrana
plasmatica

Lamela média

Parede celular

Vacuolo

Espaco
intercelular




Tryptophan Synthase (E.C. 4.2.1.20)




Absorption of foliar-applied Zn in sunflower (Helianthus annuus): importance of ~ ANNALS OF
the cuticle, stomata and trichomes BOTANY

Furndid EAn7

Annals of Botany 123: 57-68, 2019

A
Control 15 min 30 min 1h 3h 6 h @
@
-
@
L=
<
High
© Zn
=
(]
©
<T
Low

Fig. 5. (A) u-XRF scans showing Zn distribution in cross-sections of sunflower leaves
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nature communications Structural mechanism of intracellular
autoregulation of zinc uptake in ZIP
transporters
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Fig. 1. Overview of Arabidopsis chloroplast ions transporters/channels. Metals transporters
are represented in blue, anions transporters in grey and other ions in orange.
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Fig. 1. Overview of Arabidopsis chloroplast ions transporters/channels. Metals transporters are
represented in blue, anions transporters in grey and other ions in orange.
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Fig. 1 Schematic representation of the PM H?-ATPase depicting the
scalar and vectorial reactions that are energetically coupled: ATP
hydrolysis and H? pumping from the cytosol to the apoplast. This
activity creates a transmembrane H? gradient that has two components:
a difference of pH (DpH) and of electric potential (DW) across
the plasma membrane
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Modification of Leaf Apoplastic pH in Relation to
Stomatal Sensitivity to Root-Sourced Abscisic Acid

Signa]_s a Wensuo Jia, William John Davies

Figure 8. Fluorescence images of pH indicator SNARF in a C.
communis leaf, showing apoplastic pH in relation to nitrate and
ammonium ions fed through the transpiration stream. A total of
20 mm nitrate or ammonium containing pH indicator SNARF was fed
to transpiring C. communis leaves. A, Nitrate; B, ammonium.
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Modification of Leaf Apoplastic pH in Relation to
Stomatal Sensitivity to Root-Sourced Abscisic
Acid Signals1Figure 8. Fluorescence images of pH indicator SNARF in a C.
communis leaf, showing apoplastic pH in relation to nitrate and
ammonium ions fed through the transpiration stream. A total of
20 mM nitrate or ammonium containing pH indicator SNARF was fed
to transpiring C. communis leaves. A, Nitrate; B, ammonium.
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Metal ion-binding properties of L-glutamic acid and
L-aspartic acid, a comparative investigation

Table 2. Comparison of the stability constants of binary com-
plexes of Asp. Ttr and Glu with M>™ at 25°C. 7 = 0.1 M.

NaNO; .
No. Species  log Kﬁ(_@} log K.;:Iz{(ﬁr} log Ky (Ghu)
1 Mg™ 2.50=0.06 1.90+0.05 1.82=0.06
2 Ca™ 1.26=0.06 1.80=0.05" 1.41=0.02
3 Mn** 3.91=0.03 4.08+0.08 3.19=0.08
4 Co™ 6.69=0.06 3.27+0.08 4.15=0.09
5 Cu™ 8.78=0.02 3.65+0.07 7.70=0.09
() Cu-Tir .
6 Zn™ 5.35+0.06 2.69+0.07 5.84=0.03
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Dissolution and Hydration Kinetics of MgO
March 1985
Surface Technology 24(3):301-317
DOI: 
10.1016/0376-4583(85)90080-9
The dissolution and hydration kinetics of MgO single crystals and powder samples were investigated with regard to the H+ and Mg2+ concentrations and the temperature. The rate of dissolution of rotating MgO discs in buffered solutions was determined from measurements of [Mg2+] and those of the crystals and powder fractions were determined by pH and conductivity analysis. The degree of hydration was analysed by means of a thermogravimetric method. Several rate-controlling processes depending on pH were present at room temperature.(1) At pH < 5 the rate-controlling step was proton attack followed by desorption of Mg2+ of OH- depending on the value of [Mg2+]. The rate was proportional to either -pH or pMg-pH. These processes are part of the overall neutralization reaction. MgO + 2H+→Mg2+ + H2O(2) At pH ≈ 5 the rate-controlling step was a diffusion-limitation process due to protons. The rate was proportional to the proton concentration.(3) At pH > 7 the rate-controlling step was OH- adsorption followed by Mg2+ and OH- desorption leading to a rate maximum. These processes are part of the overall dissolution reaction. MgO + H2O→Mg2+ + 2OH- The neutralization processes are interpreted in terms of irreversible thermodynamics yielding a linear dependence of the rate on pH or pMg-pH. It is concluded from conductivity and scanning electron microscopy measurements during and after hydration experiments that the hydration rate is controlled by the dissolution rate under given conditions. After a supersaturation period Mg(OH)2 precipitates preferentially at the MgO surface, so that an MgO lattice reaction can be excluded. All processes undergo an Arrhenius acceleration with increasing temperature (activation energy, 70 kJ mol-1) and the overall reactions are then limited by proton and OH- diffusion.
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The dissolution and hydration kinetics of MgO single crystals and powder samples were investigated with regard to the H+ and Mg2+ concentrations and the temperature. The rate of dissolution of rotating MgO discs in buffered solutions was determined from measurements of [Mg2+] and those of the crystals and powder fractions were determined by pH and conductivity analysis. The degree of hydration was analysed by means of a thermogravimetric method. Several rate-controlling processes depending on pH were present at room temperature.(1) At pH < 5 the rate-controlling step was proton attack followed by desorption of Mg2+ of OH- depending on the value of [Mg2+]. The rate was proportional to either -pH or pMg-pH. These processes are part of the overall neutralization reaction. MgO + 2H+→Mg2+ + H2O(2) At pH ≈ 5 the rate-controlling step was a diffusion-limitation process due to protons. The rate was proportional to the proton concentration.(3) At pH > 7 the rate-controlling step was OH- adsorption followed by Mg2+ and OH- desorption leading to a rate maximum. These processes are part of the overall dissolution reaction. MgO + H2O→Mg2+ + 2OH- The neutralization processes are interpreted in terms of irreversible thermodynamics yielding a linear dependence of the rate on pH or pMg-pH. It is concluded from conductivity and scanning electron microscopy measurements during and after hydration experiments that the hydration rate is controlled by the dissolution rate under given conditions. After a supersaturation period Mg(OH)2 precipitates preferentially at the MgO surface, so that an MgO lattice reaction can be excluded. All processes undergo an Arrhenius acceleration with increasing temperature (activation energy, 70 kJ mol-1) and the overall reactions are then limited by proton and OH- diffusion.
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