

abisolo

Associação Brasileira das Indústrias de Tecnologia em Nutrição Vegetal

Átila F. Mógor – Universidade Federal do Paraná

doi: 10.1111/tpj.15090

FOCUSED REVIEW Foliar water and solute absorption: an update

Victoria Fernández^{1,*} (D, Eustaquio Gil-Pelegrín² (D) and Thomas Eichert³

Figure 1. Examples of the characteristics of different plant surfaces covered with a cuticle

The hydrophobic coatings of plant surfaces: Epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly

micron

K. Koch, H.-J. Ensikat/Micron 39 (2008) 759-772

The Plant Journal (2021) 105, 870–883

doi: 10.1111/tpj.15090

FOCUSED REVIEW Foliar water and solute absorption: an update

Victoria Fernández^{1,*} (D, Eustaquio Gil-Pelegrín² (D) and Thomas Eichert³

Annals of Botany 123: 57-68, 2019 doi: 10.1093/aob/mcy135, available online at www.academic.oup.com/aob

Fig. 2. a) Confocal images of nanomicelles. Confocal images showing translocation of **12 nm** fluorescently labelled nanoparticle by leaf.

Nanotoxicology

Nanotoxicology, 2016; 10(3): 257–278

Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants – Critical review

Fabienne Schwab, Guangshu Zhai, Meaghan Kern, Amalia Turner, Jerald L. Schnoor & Mark R. Wiesner

(B) Electron micrograph of **onion** cell wall cellulose fibers. <u>http://jcs.biologists</u>.

Electron Tomography of Cryo-Immobilized Plant Tissue

Purbasha Sarkar^{1,2^a}, Elena Bosneaga^{1,2}, Edgar G. Yap Jr.², Jyotirmoy Das¹, Wen-Ting Tsai²,

PLOS ONE

Figure 3. The electron tomography data collection and segmentation process used on Arabidopsis primary cell walls. September 2014 | Volume 9 | Issue 9 | e106928

Diâmetro geralmente em torno de 15 nm, podendo variar de 6,0 a 40,0 nm

Nano-enabled agriculture: How do nanoparticles cross barriers in plants? https://doi.org/10.1016/j.xplc.2022.100346

Honghong Wu^{1,2,3,*} and Zhaohu Li^{1,2,3,*}

G

Plant Communications Review Article

(c)

Effect of ultrasound on the dissolution of magnesium hydroxide: pH-stat and nanoscale observation Xiaojia Tang, Miao Liu, Qian Tang, Zhongyuan Du, Subei Bai, Yimin Zhu. Ultrasonics - Sonochemistry 55 (2019) 223–231https://doi.org/10.1016/j.ultsonch.2019.01.023

Biomass Conversion and Biorefinery

Processing of Biogenic Material for Energy and Chemistry

Chelated amino acids: biomass sources, preparation, properties,

and biological activities

Biomass Conversion and Biorefinery (2024) 14:2907-2921

Rania H. Jacob¹ · Adel S. Afify¹ · Sanaa M. Shanab² · Emad A. Shalaby¹

Diâmetro geralmente em torno de 15 nm, podendo variar de 6,0 a 40,0 nm

Nano-enabled agriculture: How do nanoparticles cross barriers in plants? https://doi.org/10.1016/j.xplc.2022.100346

Honghong Wu^{1,2,3,*} and Zhaohu Li^{1,2,3,*}

G

Plant Communications Review Article

Fig. 5. (A) μ -XRF scans showing Zn distribution in cross-sections of sunflower leaves underlying **ZnSO4** droplets

Electron Tomography of Cryo-Immobilized Plant Tissue

Purbasha Sarkar^{1,2¤}, Elena Bosneaga^{1,2}, Edgar G. Yap Jr.², Jyotirmoy Das¹, Wen-Ting Tsai²,

PLOS ONE

Journal of the Science of Food and Agriculture

Article

Cation-exchange capacity of plant cell walls at neutral pH

Michael S. Allen, Michael I. McBurney, Peter J. Van Soest

α -D-galacturonic acid

Calcium pectate

Tryptophan Synthase (E.C. 4.2.1.20)

Fig. 5. (A) μ -XRF scans showing Zn distribution in cross-sections of sunflower leaves underlying **ZnSO4** droplets

MEMBRANA PLÁSMATICA

nature communications

Structural mechanism of intracellular autoregulation of zinc uptake in ZIP transporters

Changxu Pang [⊕]^{1,3}, Jin Chai [⊕]^{1,3}, Ping Zhu [⊕]¹, John Shanklin [⊕]¹ & Qun Liu [⊕]^{1,2} ⊠

Review

Cell Calcium 58 (2015) 86–97

Ions channels/transporters and chloroplast regulation

Fig. 1. Overview of Arabidopsis chloroplast ions transporters/channels. Metals transporters are represented in blue, anions transporters in grey and other ions in orange.

Review

lons channels/transporters and chloroplast regulation

Fig. 1. Overview of Arabidopsis chloroplast ions transporters/channels. Metals transporters are represented in blue, anions transporters in grey and other ions in orange.

Fig. 3 – The predicted 3D structure of the chloroplast Cu/Zn-SOD AhCSD2) in Arachis hypogaea

Plant lipid environment and membrane enzymes: the case of the plasma membrane H⁺-ATPase

Plant Cell Rep DOI 10.1007/s00299-014-1735-z

Plant Cell Reports

Regulation of Cytosolic pH: The Contributions of Plant Plasma Membrane H⁺-ATPases and Multiple Transporters

Mechanisms and regulation of organic acid accumulation in plant vacuoles

Fig. 1 Vacuolar proteins that are involved in the transport of organic acids.

Modification of Leaf Apoplastic pH in Relation to Stomatal Sensitivity to Root-Sourced Abscisic Acid

Signals 🔒 Wensuo Jia, William John Davies

Figure 8. Fluorescence images of pH indicator SNARF in a *C. communis* leaf, showing apoplastic pH in relation to nitrate and ammonium ions fed through the transpiration stream. A total of 20 mM nitrate or ammonium containing pH indicator SNARF was fed to transpiring *C. communis* leaves. A, Nitrate; B, ammonium.

- 6.5 - 6.0 - 5.5 - 5.0

K^+ and pH homeostasis in plant cells is controlled by a synchronized K^+/H^+ antiport at the plasma and vacuolar membrane

New Phytologist (2024) 241: 1525–1542 doi: 10.1111/nph.19436

Kunkun Li¹ ⁽ⁱ⁾, Christina Grauschopf¹, Rainer Hedrich¹ ⁽ⁱ⁾, Ingo Dreyer² ⁽ⁱ⁾ and Kai R. Konrad¹ ⁽ⁱ⁾

High

Low

Dynamics of [H+]cyt / [H+]vac correlates with changes in the K+ gradient

Metal ion-binding properties of L-glutamic acid and L-aspartic acid, a comparative investigation

Carboxyl terminus **Table 2.** Comparison of the stability constants of binary complexes of Asp, Ttr and Glu with M^{2+} at 25°C, I = 0.1 M, NaNO₃^{*}.

No.	Species	$\log K^M_{M(Asp)}$	$\log K^M_{M(Trr)}$	$\log K^M_{M(Glu)}$
1	Mg^{2+}	2.50±0.06	1.90±0.05	1.82±0.06
2	Ca ²⁺	1.26±0.06	$1.80{\pm}0.05^{1}$	1.41 ± 0.02
3	Mn ²⁺	3.91±0.03	4.08±0.08	3.19±0.08
4	Co ²⁺	6.69±0.06	3.27±0.08	4.15±0.09
5	Cu ²⁺	8.78±0.02	3.65±0.07	7.70±0.09
6	Zn ²⁺	5.35±0.06	2.69 ± 0.07	5.84±0.03

*The given errors are three times the standard error of the meanvalue or the sum of the propabable systematic errors. ¹[6,14]

Biochemical Indicators and Biofertilizer Application for Diagnosis and Allevation Micronutrient Deficiency in Plant

Chapter | First Online: 28 November 2019

Zeinab A. Salama & Magdi T. Abdelhamid

6.2 Limitações da análise foliar para fins de avaliar a nutrição das plantas

Capítulo 6

Perspectivas de Uso de Métodos Diagnósticos Alternativos:

Testes Bioquímicos

Jairo Osvaldo Cazetta¹ Ivana Machado Fonseca² Renato de Mello Prado³ Nutrição de planas - Diagnose foliar em hortaliças. 1ed.Jaboticabal: FCAV/CAPES/FAPESP/FUNDUNESP, 2010

Cottage Industry of Biocontrol Agents and Their Applications

Fractical Aspects to Deal Biologically with Piets and Stresses Facing Strategic Coops

2 Springe

A ABISOLO ASSOCIADOS MERCADO EVENTOS ACADEMIA ABISOLO CONTATO 🖬 🧍

ÁREA DO ASSOCIADO

ao 🔿 ciéncia

conexão ciência

abisolo 💋

O portal que consolida toda a produção científica relacionada ao setor de fertilizantes especiais.

ACESSAR AGORA

abisolo 400

abisolo

Associação Brasileira das Indústrias de Tecnologia em Nutrição Vegetal

ABISOLO

Complexo Empresarial Galleria Office Av. Bailarina Selma Parada, 201 – (Bloco 1 – Sala 133) Jardim Madalena – Campinas/SP

(19) 3116-1007 | (19) 3116-1008

www.abisolo.com.br

